DIABETES MELLITUS

Rob Presley, DVM, MS, DACVIM
Upstate Veterinary Specialists
TCTC Technician Program
February 10, 2013

Diabetes mellitus

- Insulin deficiency
 - Absolute
 - Relative

- Causes abnormal metabolism
 - Glucose → hyperglycemia

Pancreatic function

- Exocrine function
 - Digestive enzymes
 - Trypsin
 - Amylase
 - Lipase

- Endocrine function
 - Islets of Langerhans
 - Beta cells
 - Produce insulin

Insulin

- Half life of 10 minutes

- Promotes
 - Glucose uptake by cells
 - Glucose storage by the liver and muscle
 - Glycogen
 - Fat storage
 - Protein production

Insulin

- Inhibits
 - Gluconeogenesis
 - Production of glucose by liver
 - Glycogenolysis
 - Breakdown of glycogen in liver and muscle
 - Breakdown of fats
 - Production of ketones
 - Breakdown of protein

- Promotes anabolic processes
 - Storage
 - Glycogen
 - Fat
 - Protein

- Prevents catabolic processes
 - Breakdown of other nutrients into glucose

- Insulin deficiency
 - Hyperglycemia
Diabetes mellitus

• Type I
 – Previously called Insulin dependent
 – Absolute insulin deficiency
 – Destruction of Beta cells
 • Immune mediated
 • Idiopathic
 • <25% of beta cells remaining
 – Most common in dogs
 • Immune mediated
 – Anti-beta cell antibodies
 – Idiopathic
 – Pancreatitis
 – Immune mediated
 – Idiopathic
 – <25% of beta cells remaining
 – Most common in dogs

• Type II
 – Previously Non-insulin dependent
 – Relative insulin deficiency
 • Peripheral resistance
 • Impaired insulin secretion
 • Increased gluconeogenesis
 – Most common in cats
 • 90% humans

Diabetes mellitus

• Type II
 – Obesity plays a major role
 • Obese 4x risk
 – B cell dysfunction
 • Decreased insulin release
 • <25% of beta cells
 • Secondary to
 – Amyloid deposition
 – Lipid toxicity
 – Glucose toxicity

• Dogs
 – Older dogs
 • 7-9 years
 • Juvenile form
 – <1 yr old
 – Rare
 – Females > males
 – Breeds
 • Miniature Poodles
 • Miniature Schnauzers
 • Bichon

Diabetes mellitus

• Cats
 – Older cats
 • 10 years +
 • Neutered males > females
 • 70-80% male
 • 50-60% obese

Clinical signs

• Polyuria / polydipsia
 – Osmotic diuresis
 – Renal threshold
 • 200 mg/dl dog
 • 250 mg/dl cat

• Polyphagia
 – Insulin promotes glucose movement into hypothalamus
 • Satiety center
Clinical signs

• Weight loss
 – Decreased cellular uptake
 – Catabolism
 • Fat
 • Muscle
 – “starving in the face of plenty”

Clinical signs

• Lethargy
• Weakness
 – Diabetic neuropathy
 – Decreased glucose uptake
• Hepatomegaly
• Vomiting / diarrhea
 – DKA

Clinical signs

• Cataracts
 – Dogs only
 – Excessive glucose converted to fructose and sorbitol
 • Osmotic water uptake in lens
 – Wide fluctuations in BG seem to be more important than just high BG levels
 – Can occur even in well controlled diabetics

Clinical signs

• Diabetic neuropathy
 – Changes in nerves occur in 90% of dogs and cats
 • Dogs typically non-clinical
 – Demyelination
 – Degeneration of axon
 – Vascular pathology

Clinical signs

• Diabetic neuropathy
 – Plantigrade stance
 • Muscle weakness
 • Proprioceptive deficits
 • Can be seen with hypokalemia
 • Occasionally seen in front legs

Other signs

• Pancreatitis
 – Cause / effect
 – Hyperlipidemia may contribute

• Infection
 – Skin
 – Respiratory
 – Urinary tract
Diagnosis

• Typically straightforward
 – Routine bloodwork
 – Urinalysis
 – Fructosamine
 – Glycosylated hemoglobin

Routine bloodwork

• Complete blood count
 – Usually normal
 – Elevated WBC

• Serum Chemistries
 – Elevated liver values
 – Increased triglycerides
 – Increased cholesterol

• Abnormal lipid metabolism

• cPLI / IPI
 – If pancreatitis present in dogs

Fasting glucose

• Fasting glucose
 – < 200 mg/dl

• Stress hyperglycemia
 – n=106 cats
 • Range 146-592 mg/dL
 • Most <300
 – Only 2/106 were > 300
 – Dogs less affected

Urinalysis

• Glucosuria
 – BG
 • > 200 dog
 • >250 dog

• Ketonuria
 – Acetoacetic acid
 – Dipstick
 – Beta hydroxybutyrate
 • Produced in highest volumes in DKA
 • Does not read on standard dipstick
 • Add hydrogen peroxide and re-test

• Urinary tract infection
 – Must culture urine!!

Still not sure?

• Glycated proteins
 – Non-enzymatic binding of glucose to
 • Hemoglobin
 • Albumin

• Glycosylated hemoglobin
 – A1c
 – Control 2-3 months

Still not sure?

• Fructosamine
 – Glucose bound to albumin
 – Control over 2-3 weeks

 – Hypoglycemia
 – Elevated triglycerides
 • May affect measurement

• Not affected by acute stress!!!
Dietary therapy

- Weight loss
 - Obesity = insulin resistance
 - Feed 60-70% of maintenance calories
 - Slow, controlled weight loss
- Minimize glucose fluctuations
 - Feed multiple small meals
 - Avoid simple carbohydrates

• Dogs
 - High fiber
 - Complex carbohydrates
 - Slow absorption of glucose
 - Hills w/d
 - Hills r/d
 - Royal canin diabetic HF
 - Purina DCO

Diabetic therapy

• Cats
 - Carnivores
 - Not omnivores
 - High protein
 - Low carbohydrate
 - Lack salivary amylase
 - Low levels of intestinal / pancreatic amylase
 - High capacity of gluconeogenesis from proteins

• Antigenicity
 - Cats
 - Bovine is similar
 - Dogs
 - Porcine and human similar
 - Anti-insulin antibodies
 - Change in insulin duration
 - Poor diabetic control
 - Insulin resistance
 - Dogs develop antibodies to beef insulin
 - PZI
 - Use of human insulin usually not problematic in either species

Dietary management

• Diets
 - Canned varieties
 - lower carbohydrates
 - Purina DM
 - Evo 95
 - Friskies "classic" varieties
 - Catinfo.org
 - List of appropriate diets
 - Hills MD
 - High fiber
 - Do not use!!!
Insulin

- Numerous types
 - Full time job keeping up with what’s available
 - discontinued
 - backorder

Insulin therapy

- Currently available
 - (may change in 10 minutes)
 - Ultrashort
 - Insulin Lispro
 - Insulin Aspart
 - Insulin Glulisine
 - Regular
 - NPH
 - PZI
 - Glargine
 - Detemir

Insulin therapy

- Classified based on duration of action
 - Ultrashort
 - Not really used in veterinary patients
 - Short
 - Regular
 - Intermediate
 - NPH, Glargine, Detemir
 - Long
 - PZI

- Concentration
 - Units per milliliter
 - U-40
 - U-100

Insulin therapy

- Which type to start?
 - DKA
 - Regular insulin
 - Dogs
 - NPH
 - 0.25 U/kg SQ q12
 - Cats
 - Glargine
 - Best chance of remission
 - 1-3 U / CAT SQ q 12

Insulin therapy

- Ideally hospitalize on day 1
 - Start glucose curve
 - q 2 hours
 - Goal is to ensure BG is not getting too low
 - DO NOT increase dose
 - Takes several days for insulin to equilibrate
Insulin therapy

- Recheck in 1 week for BG curve

Monitoring therapy

- Typically cannot rely on one technique
 - Glucose curves
 - Home glucose curves
 - Glycosylated hemoglobin
 - Fructosamine
 - Urine samples

Glucose curves

- Perform
 - After initiating therapy
 - Following equilibration after dose change
 - If clinical signs recur
 - If suspicious of hypoglycemia
 - Concurrent illness that could affect BG

Glucose curve

- Alpha trak
 - Veterinary only glucometer
 - Plasma glucose percentages
 - Dog: 87.5%
 - Cat: 93%
 - Human: 58%
 - 42% in RBCs
 - Human meters will underestimate true BG
 - Seem better controlled than they are

Glucose curves

- Maintain normal routine
 - Owners to feed and give insulin at home
 - Some animals will not eat in hospital
 - Bring in for curve during day

- Obtain blood glucose q2 hours
 - Even with glargine / detemir

Glucose curve

- If on once daily insulin
 - 24 hour curve
- Twice daily
 - 12 hour curve
Glucose curve

- **Onset of action**
 - Time until insulin effect occurs
- **Nadir**
 - Lowest BG concentration
- **Duration**
 - Time from administration through nadir until BG >250 mg/dl

Goals

- Eliminate clinical signs
- Avoid major BG fluctuations
- Maintain BG 80-200 mg/dl for 24 hour
 - Rarely achieved

- To limit complications
 - <300 mg/dl in cats
 - 200-250 mg/dl in dogs
 - Similar to renal threshold?

Glucose curve

- Always maintain BG <80 mg/dl
 - Ideal nadir
 - 80 – 150 mg/dl

Glucose curves

- “Spot” checks
- Random samples
 - COMPLETELY WORTHLESS!!!!!!!

Home monitoring

- **Clinical signs**
 - Water consumption
 - Easy to measure
 - Appetite
 - Attitude
 - Weight
 - Urine glucose
 - If clinical signs are normal
 - Usually well controlled
Home monitoring

- Urine glucose
 - Can be used to help determine control
 - If persistently negative
 - Insulin dose may be too high
 - If persistently glucosuric, insulin dose may be too low
 - Do not use alone to adjust insulin

- Glucose curves
 - Owners can perform curves at home
 - "Choose clients wisely"
 - Not trying to achieve fine control
 - Prevent owners from being too overzealous
 - NOT adjusting insulin daily

Glycated proteins

- Glycosylated hemoglobin
 - Not used frequently
 - Time frame too long for adjusting insulin dose

- Fructosamine
 - 2-3 weeks
 - Helpful
 - Data conflicting
 - Stressed animals
 - Suspect somogyi effect

Somogyi phenomenon

- Hypoglycemia
 - BG <60

- Causes release of epinephrine / glucagon
 - Rebound hyperglycemia
 - Can remain elevated for hours to days

- Can be very difficult to diagnose
- Decide if:
 - Inadequate insulin dose
 - Somogyi

- Fructosamine
 - If normal
 - May suggest significant periods of hypoglycemia

Insulin resistance

- > 2.2 units / kg / per injection
- Become suspicious when
 - Marked hyperglycemia persists despite > 1.5 u / kg dose
Insulin resistance

- Always rule out technical issues first
 - Patient management
 - Owner technique
 - Improper insulin handling
 - Mixing
 - Storage
 - Incorrect syringe
 - U-40 vs. U-100
 - Improper injection technique
 - Expired insulin

- If resistance is suspected
 - Buy new bottle of insulin
 - Change injection site
 - Monitor owners perform injection

Insulin resistance

- Anti-insulin antibodies
 - Actual incidence unknown
 - No commercial test
 - Switch to different insulin
 - Beef for cats (PZI)
 - Pork for dogs (vetsulin)
 - Should improve control within 2 weeks

- Intact females
 - Progesterone / growth hormone

- Hormone dysfunction
 - Acromegaly
 - Thyroid disorders
 - Hyperadrenocorticism

Insulin resistance

- Infection
 - Urinary tract infection
 - Dental disease
- Neoplasia
- Hyperlipidemia
- Renal failure
- Pancreatitis
- Congestive heart failure

Prognosis

- Guarded long term
 - Concurrent disease
 - Owner commitment
 - Education is paramount
 - Consistency
 - Injections
 - Feeding
 - Clinical signs of both hyper and hypoglycemia
Diabetic ketoacidosis

- Absolute emergency!!
 - Check for ketones anytime diabetic sick
- Caused by
 - Absolute insulin deficiency
 - Stress hormone production
 - Glucagon
 - Epinephrine
 - Cortisol
 - Growth hormone
- Ketones produced by liver from free fatty acids
 - Incomplete burning of fat
 - Promoted by glucagon
 - Acetoacetic acid
 - Beta-hydroxybutyrate
 - Acetone

Diabetic ketoacidosis

- Lack of insulin
 - Hyperglycemia
 - Osmotic diuresis
 - Hypovolemia
 - Free water loss
 - Hypokalemia
 - Hypoglycemia
 - Ketone production
 - Acidosis
 - High anion gap acidosis
 - Underestimated on routine dipstick
 - Up to 20:1 ratio
 - BHB: acetoacetic acid

Diabetic ketoacidosis

- Place IV catheter
 - Preferably central line
- Aggressive fluid therapy
 - Correct dehydration
 - 6-8 hours
 - Correct electrolytes
 - Ongoing losses from severe osmotic diuresis
 - May need to supplement potassium
 - Intracellular shift
 - Correction of acidosis
 - Insulin therapy

Diabetic ketoacidosis

- Insulin therapy
 - Regular insulin ONLY
- Subcutaneous method
 - Only for non-dehydrated patients
 - Dogs
 - 0.5 - 1 unit / kg q 6-8 hours
 - Cat
 - 0.25 units / kg q 6-8 hours
 - Measure BG every 2 hours

Diabetic ketoacidosis

- IM technique
 - 0.2 u/kg IM initially
 - 0.1 u / kg hourly
 - Until BG < 250 mg/dl
 - Then switch to SQ method
 - q6-8 hours

Insulin CRI

- DKA dogs and cats
 - Easiest way to manage
 - Confusing initially
 - Simply following a chart
Insulin CRI

- Dogs
 - 250 ml NaCl
 - 2.2 units R insulin / kg

- Cats
 - 250 ml NaCl
 - 1.1 u/kg
 - 10 ml/hr
 - Waste first 50mL
 - Insulin binds to tubing
 - Monitor glucose q 1-2 h

Insulin CRI

- Pros
 - Very easy
 - Vet students can use it
 - Not as time consuming
 - Keeps you from calling me every 2 hours for a dose of insulin

- Cons
 - Makes you responsible for therapy
 - Also a pro!!!
 - Requires multiple fluid bags
 - Saline
 - 2.5% dextrose
 - 5% dextrose
 - Often have to switch between several times

Diabetic ketoacidosis

- Continue regular insulin until
 - Urine ketone free
 - Patient is eating

- Switch to longer acting insulin
 - NPH (dogs)
 - Glargine (cats)
 - May develop low amount ketones once on longer acting insulin

Diabetic ketoacidosis

- Hypokalemia common
 - Intracellular shift
 - Insulin
 - Correction of acidosis
 - Often need KCL CRI
 - < 0.5 mEq / kg / hour

- Hypophosphatemia
 - Catabolism of fat and muscle
 - Phosphorus wasting
 - 0.01 – 0.03 mmol /kg / hour over 6 hours
Hyperosmolar diabetes

- Glucose > 600
- Osmolality > 350
- Ketone negative
 - CNS depression
 - Ataxia
 - Nystagmus
 - Coma
 - Seizures
- Treatment is similar to DKA
 - Avoid rapid fluid loading
 - Rehydrate over 24 hours
 - Insulin CRI ideal
 - Lower rate (1.1 u / kg / day)